A survey of dynamic graph
algorithms

Monika Henzinger
University of Vienna

¢ universitat
.y wien

Static Algorithm

Computational Problem

\ 4

Input Algorithm > Output
I O

Performance measures:
1. Running Time
2. Space
3. Approximation ratio

] 475 niversitat
ey wien

What is a Dynamic Algorithm?

Computational Problem

Output
[nput | Algorithm " sequence
sequence 1
I, Oo
I, =1, + Al 0
I, =1 + AL 0

Do we need to recompute the output from scratch?

3 g wiversitat
" wien

Whatis a (Fully) Dynamic Graph
Algorithm?

Computational graph problem

Sequence of . . _ Output
onelatonst 1] Dynamic algorithm > deitiance

Operations:

* Initialize(QG)
InsertEdge(u, v, weight)
DeleteEdge(u,v)
InsertNode(u)
DeleteNode(u)

, * Query(G) or Query(u) or Query(u, v)) wiersitit

Whatis a (Fully) Dynamic Graph
Algorithm?

Computational graph problem

Sequence of . . _ Output
operationst [1} Dynamic algorithm > Sequence
Operations:

* Initialize(G) Preprocessing time

InsertEdge(u, v, weight
DeleteEdge(u,v)

(InsertNode(u)) 3 Update time
(DeleteNode(u)) /

Query(G) or Query(u) or Query(u, v) Query time

J 4% niversitit
A wien

Input generation: Adversary Models

Sequence of _ Output

operations Algorithm sequence

How is the input, i.e. the sequence of operations,
generated?

6 g wiversitat

ey wien

Adversary Models

Sequence of

—_— - _ Output
operations Algorithm >

sequence

Adaptive adversary:
* knows the algorithm (but not its random choices)
* sees all the answers to the previous queries

* based on this information and unlimited computational

power creates the next operation with the goal of maximizing
the total running time

) 475 niversitat
ey wien

Adversary Models

Sequence of ,
quence Algorithm ;- Jutput
operations sequence

Oblivious adversary:
* knows the algorithm (but not its random choices)

* has to fix the sequence of operations before it receives any
output from the algorithm

» creates the sequence of operations with unlimited
computational power and with the goal of maximizing the
total running time

9 475% wniversitat
) wien

Adversary Models

Sequence of Output

operations Algorithm sequence

Total running time for any sequence of operations s:
Tadaptive = Toblivious

Tadaptive oblivious if
* algorithm is deterministic

* outputis unique

) 475 niversitat
ey wien

Performance Measures

Space: Usually linear or small polynomial
Preprocessing time: Usually linear or small polynomial
Time per operation:

- Trade-off: query vs update time

- Amortized vs worst-case

* Oblivious vs adaptive adversary

g wniversitat
el wien

0

Outline

Motivation
State of the art
Conditional lower bounds

Hierarchical graph decompositions with
polylogarithmic time per operation

5. Hierarchical graph decompositions?

B (W=

Notation:
- n =number of nodes, usually unchanged
 m =number of edges in current graph

g% wniversitat

4 ey wien

Motivation

1. Real-world applications: huge dynamically
changing graphs: 55 out of 89 in survey

Graph Number of nodes Old number of
nodes

WWW host names 1.3 billion (June 1.0 billion (May
2019) 2016)
WWW (indexed) web 5.7 billion (Sept 4.75 billion (July
pages 2019) 2016)
Facebook 2.4 billion (July 2019) 2.1 billion (October
2016)

g% wniversitat
P e wien

Motivation

1.

2. Fundamental computational question: How hard
is it to find the answer after a small change in the
input instance

3
®

This Photo by Unknown Author is licensed under CC BY

e~

https://rinabrundu.com/category/sondaggi-2/
https://creativecommons.org/licenses/by/3.0/

Motivation

1.
2.

3. Subroutines in static graph algorithms:

- Example: Max-flow and multi-commodity flow [Garg-
Koenemann’'98, Madry’'10] algorithms with shortest
augmenting paths need dynamic shortest-path
algorithm

(1+¢)
@ |:> @1-&) I:>
14

 wiversitat
= WIEN

Motivation

1
2.
3.
4. Techniques are often reused in other areas of

algorithms such as data stream algorithms,
distributed algorithms, and parallel algorithms

g wniversitat
el wien

3

Update time for “classic” problems
with polylog query time
* Undirected: For any small constante > 0
+ Connectivity: Q(logn) [Patrascu-Demaine ‘04], O(1) [H-King 95,
Holm-deLichtenberg-Thorup 98]

« MST: Q(logn) [Patrascu-Demaine ‘04], 0(1) [Holm-deLichtenberg-
Thorup 98]

« SSSP: Exact: O(m'~¢), 0(m)
« APSP: Exact: Q(m'~€), 0(n?) update, O(n) path reporting query
[Demetrescu-Italiano ‘03]

« 0(n'?) update, 0(n'->?°) distance query, 0(n'°) path reporting
query [Bergamaschi, H, Gutenberg, Vassilevska Williams, Wein ’ 20]

Minimum Cut:

- Q(n'~¢) weighted exact, 0(m)

« (1 + e)-approx: O(y/n) [Thorup’01]

Maximum cardinality matching:

- Q(m'/?7¢) exact, 0(m)

e 0(ym) for (1+¢g)-approx. [Gupta-Peng’13] A niversitit
) wien

6

4

Update time for classic” problems

with polylog query time

Directed: For any small constante > 0

Reachability /SSSP:

- Q(m'~¢),0@m)

SCC: Is the graph strongly connected?

- Q(m'/27¢), 0(min(m, n'*%)) [van den Brand, Nanongkai,
Saranurak ‘19]

Transitive closure:

« Q(m'™9),0(n*)

- update time: 0(n'*°%), query time 0(n
Brand, Nanongkai, Saranurak ‘19]

APSP:

« Q(m'~¢), 0(n?) update, 0(n) path reporting query
Demetrescu-Italiano ‘03]

1.406) Tvan den

g wniversitat
ey wien

Update time for approximation algorithms
with polylog query time
* (A + 1) — vertex coloring:
O(1) [H-Peng ‘19, Bhattacharya-Grandoni-Kulkarni-Liu ‘19]
* (1 + &)- approx min spanning forest value:
0(1) if max weight is 0(m/?) [H-Peng’19]
- Edge orientation with low outdegree:
0(1) for 0((logn)?) —approximation [Berglin-Brodal ‘17]
* (1 + &)- approx densest subgraph and (2 + €)- approx
degeneracy :
0(1) [Sawlani-Wang '19]
* (4 + £)- approx k-core decomposition:
0(1) [Sun-Chan-Sozio '20]
(1 + &)- electrical flow:

» 0(min(m3/#,n>/%)) [Durfee-Gao-Goranci-Peng '19]

g wniversitat
e wien

3

Update time for approximation algorithms
with polylog query time
« Low-stretch probabilistic tree embedding:
« n°M for n° stretch [Forster-H-Goranci ‘20]

« Low-stretch spanner:

(2k — 1) stretch with size 0(n**/*logn): 0(1)* or
0(k(logn)?) [Baswana,-Khurana,-Sarkar 12, Forster-Goranci
19]

« (1 + &n°M)-spanner with size 0(n1+°W):
Q(m!~¢) for combinatorial algorithms, O(n
|[Bergamaschi, H, Gutenberg, Vassilevska Williams,Wein’ 20]

1.529)

« Diameter:

e Q(n?7¢) for (% — &)-approx [Ancona, H, Roditty, Vassilevska
Williams, Wein ‘19]

g wniversitat
ey wien

7

Outline

Motivation
State of the art
Conditional lower bounds

Hierarchical graph decompositions with
polylogarithmic time per operation

5. Hierarchical graph decompositions?

B (W=

Notation:
- n =number of nodes, usually unchanged
 m =number of edges in current graph

g% wniversitat

20 Yy wien

zl

Conditional lower bounds

|Patrascu’10, Abboud, Vassilevska Williams’14, H-Krinninger-
Nanongkai-Saranurak’15]

1
Lower bound Q(mﬁ_g), Qnt~%)or Q(m1#) on time per

update/query for fully dynamic based on common
complexity assumptions

« Many apply to oblivious adversary
« Apply to amortized time

g niversitat
ey wien

&=

Conditional lower bounds

Conditional lower bounds [Patrascu ‘10, Abboud-
VassilevskaWilliams’14,H-Krinninger-Nanongkai-Saranurak’15,] using
these conjectures

« Assuming SETH (Strong Exponential Time Hypothesis):
Satisfiability of a CNF formula with n variables takes time

(2478 poly(n)) or
« 3SUM takes time Q(n%"¢) or
- Triangle detection takes time Q(n37¢) or

» AllPairsShortestPath or combinatorial Boolean matrix
multiplication or online matrix-vector multiplications (OMv)
takes time Q(n37¢)

g wniversitat
ey wien

zz

OMv Conjecture

|[H-Krinninger-Nanonkai-Saranurak’15]

arrive
Input: Boolean M online

Output:
Not only
“combinatorial”

Mv, Mv, Mv,

Conjecture: No algorithm with total time 0(n>~¢)

g% wniversitat
. wien

Dynamic ss-reachability takes
Q(n'~¢) under OMv

* Given M construct bipartite graph (X U Y, E) with n
nodes in each column plus an isolated node s

edge (v;, x;)
iff M;; =1

475 wniversitat
@ wien

24

Dynamic ss-reachability takes
Q(n'~¢) under OMv

* Given M construct bipartite graph (X U Y, E)with n
nodes in each column plus an isolated node s

* Given vector v add edge (s, y;) iff V= 1 edge (y;, %)

iff M, = 1

Note: (Mv), = 1 iff s can reach x; °

J i Xi
U IS |

475 wniversitat
o wien

25 ‘\'ij =) e

Dynamic ss-reachability takes
Q(n'~¢) under OMv

* Given M construct bipartite graph with n nodes in each column plus
an isolated node s

* Given vector v add edge (s, y;) iffv;=1 edge (vj, x;)
iff M;; = 1
Note: (Mv), = 1 iff s can reach x;
o
Algorithm for computing Mv: Yj

For j from 1 to n:
if v; = 1 then insert(s, y;)

For i from 1 to n: Xi
if s can reach x; return 1, else 0

For j from 1 to n:
if v; =1 then delete(s, y;)

g niversitat
> o wien

Dynamic ss-reachability takes
Q(n'~¢) under OMv

« Algorithm for computing Mv:

« Forj from 1 to n: s yj
* ifv;=1then insert(s, y;) S
 Forifrom1 ton: X;

 if scan reach x; return 1 else 0
« Forj from 1 to n:
* 1fv;=1then delete(s, y;)

— mninsertions, deletions and queries per vector v on a graph
with 2n + 1 nodes and O(n?) edges

— n? insertions, deletions and queries for all vectors v on a
graph with 2n + 1 nodes and O(n?) edges take time Q(

3—&
ﬁ\ miv}rsitét
a7z ReZY wien

\‘//

Dynamic ss-reachability takes
Q(n'~¢) under OMv

— n?insertions, deletions and queries for all vectors v on a graph
with 2n + 1 nodes and O(n?) edges take time Q(n37¢)

* No dynamic single source reachability algorithm can take time
Q(n'~%) per update and
Q(n1~¢) per query

g% Wniversitat
: o wien

Lower bounds based on OMv

Lower bound of 2(m'/27¢) on time per update or query
(sometimes even 2(m!~%)) for fully dynamic

« <5/3-approximate SSP

« Densest subgraph

* (2 — g)-approximate weighted diameter

* Strong connectivity

« Bipartite perfect matching

» Size of bipartite maximum cardinality matching
» Electrical flow [Goranci-H-Peng'18]

g wniversitat
el wien

z7

Outline

 Motivation
e State of the art
 (Conditional lower bounds

« Hierarchical graph decompositions with
polylogarithmic time per operation
« Type 1: Monotone, global invariants
« Type 2: Non-monotone, local invariants

* Are hierarchies necessary?

g% wniversitat
30 e wien

Hierarchical graph decompositions

with polylog time per operation

* Nodes and/or edges are partitioned into O (logn) levels
dependent on

« sequence of updates and

* Invariants

* Goal: Polylogarithmic time per update

475 wniversitat
5 @ wien

Hierarchical graph decomposition 1

 Monotone hierarchy with global invariants
|H-King'95, Holm-de Lichtenberg-Thorup'98]:

« Monotone: All nodes/edges initially and all newly
inserted edges are on level 0 and only move up in the
hierarchy.

 (Global invariants

g wniversitat
ey wien

>z

Hierarchical graph decomposition 1

Spanning tree [Holm et al 98]

* Nodes on all levels, each edge e has a level
[(e), initially O
« Maintains spanning forest T

« T; subforest of T of edges of level > i, spans
graph induced by all edges on level > i ‘

e
* Global invariants: _2_./.
* Level invariant: Let e be a tree edge. All non-

tree edges crossing the tree cut T -{ e } must
have level < [(e)

 Size invariant: Number of nodes in a cc on level

475 wniversitat
= @ wien

Hierarchical graph decomposition 1

O(logn) levels

g niversitat
B\ 5 Wilen

Hierarchical graph decomposition 1

Delete(u, v)

@ O(logn) levels

g niversitat
B\ 5 Wilen

35 & e

Hierarchical graph decomposition 1

Delete(u, v):

If (u, v) is a tree edge on level i then
1. LetT’:=smaller of T, and T,
2. ..

S K wien

Hierarchical graph decomposition 1

2. Move all tree edges of T' that are on level i to level i +1

3. Test all non-tree edges incident to T’ until one is found that reconnects T},
and T,, (=replacement edge) or all have been tested.

4. Move all the tested non-tree edges to level i +1

If no replacement edge found on level i, repeat on level i — 1 else

replacement edge becomes a level-i tree edge

&

g7 universitat
37 e wien

QL /s
&=

Running time analysis

* Level invariant implies: # of levels < logn
- With suitable data structures: work of delete is O(# of
edges whose level has increased * polylog n)

« Charge O(polylog n) to each edge that has its level
increased to account for the work

« Each edge can be charged only log n times
« Total charge per edge O(polylog n)

« Total work O(m polylog n)

« Amortized time O(polylog n) per deletion

g wniversitat
el wien

3z

Hierarchical graph decomposition 1

 Monotone hierarchy with global invariants:
- Monotone edge movements
* Global invariants
- Simple running time analysis, longer proof of global invariants

Usage: Connectivity, MST, 2-edge connectivity, 2-vertex
connectivity

Almost tight: (Q(logn) cell probe lower bound [Patrascu-Demaine
04]

No other approaches achieve same performance for these problems

g% Wniversitat
37 e wien

Hierarchical graph decomposition 2

 Hierarchies with local invariants
|[Bhattacharya-H-Italiano‘15]:

* Bi-directional movements: Edges and nodes move up
and down deterministically

* Local invariants: Condition on neighborhood of each
node, directly enforced by algorithm

« Combination with a second algorithm, e.g., primal-dual
method

g wniversitat
ey wien

40

Hierarchical graph decomposition 2

for matching and vertex cover
St

« Eachnode v hasalevel [(v) € [—1,logn]
- Each edge e has a weight w(e) = 1/(1+€)i ,
where i is the level of the higher end point
- Each node v has a weight W(v) =
Z(u,v)EE W(u: v)

Local invariants:
e VvelV—-S_1:W(()e [1%81]
« YveS_{:W(v) € [0,1]

— No edge between 2 vertices of S_;

— V — §_, isvertex cover, S_4 is not in vertex
cover

— Local invariants = relaxed complementary
slackness conditions for matching LP

4l

i miv%rsitét

Making it dynamic

- Edge update might violate local invariants
« Idea: If W(x) is too large, move node up

w(e)

w(e) =1/(1 + &)'™*

=1/(1+ &)!®

= W (x) might drop, at most by multiplicative
factor 1/(1 + €)

g% wiversitat
‘wien

Making it dynamic

- Edge update might violate local invariants
« Idea: If W (x) is too small, move node down

w(e) ~~

=1/(1+ &)™

X (e)
| 1/(1 + E)l(X)—l

— W (x) might increase, at most by
multiplicative factor (1 + &)

g% Wniversitat
) wien

Making it dynamic

« Idea: If W (x) is too large/small, move node

w(e) = 1/2!® w(e) = 1/219%

FIX-NODE-WEIGHTS

WHILE there is a node x with W (x) too large or too small Maintains relaxed
If W(x) is too large then complementary
move x up to the lowest level such that W(x) < 1 slackness
If W(x) is too small then conditions

move x down ...

475 wniversitat
o wien

NS

Making it dynamic

- IfW(x) is too large, move node up:

might decrease weight
of neighbors
= neighbors might drop

 —_— = their neighbors might
rise
w(e) = 1/2!® — AVALANCHE !

w(e) = 1/2!00+1 —

FIX-NODE-WEIGHTS

WHILE there is a node x with W (x) too large or too small

If W(x) is too large then L »
move x up to the lowest level such that W (x) < 1 "‘“ £ e
If W(x) is too small then A -3

move x down ...

g niversitat
<y wien

\‘///

Hierarchical graph decomposition 2

- Hierarchies with local invariants:
« Simple correctness proof
* Running time analysis:
« With carefully chosen potential function:
* O(logn) [Bhattacharya-H-Italiano ‘15]

« 0(1) [Bhattacharya-Chakrabarty-H’17, Bhattacharya-
Kulkarni'18]

« Combination with second alg, e.g. primal-dual method

475 niversitat
A wien

46

Hierarchical graph decomposition 2

« Hierarchies with local invariants [Bhattacharya-H-
Italiano‘15]

 Bi-directional movements
 Local invariants
* Combination with second algorithm

« Correctness proof follows directly, running time analysis is
sophisticated

Usage:
* (2 + ¢)-approximate vertex cover & fractional matching

« 0(f?%)-approximate set cover, f = number of sets one element
can belong to

* (2 + ¢)-approximate densest subgraph
(A + 1)-vertex coloring
* (4 + €)- approx k-core decomposition

/{(»'/1,\\ . e aw
gea% iniversitat
47 e wien

Outline

 Motivation
e State of the art

« Hierarchical graph decompositions with
polylogarithmic time per operation
- Type 1: Monotone, global invariants
* Type 2: Non-monotone, local invariants

* Are hierarchies necessary?

g7 universitat
L . wien

Outline

 Motivation
« State of the art

« Hierarchical graph decompositions with
polylogarithmic time per operation
- Type 1: Monotone, global invariants
« Type 2: Non-monotone, local invariants

* Are dynamic hierarchies necessary?

g0 wniversitat
= ey wien

Dynamic hierarchical graph
decompositions?

Disadvantages:
« Hard to implement
« Large constants, slow in practice

* Sometimes bottleneck in theory:
- Example: (A + 1)-vertex coloring
« worst-case O(logn) time to maintain hierarchy
* 0(1) expected time to maintain coloring with hierarchy

[s dynamic hierarchical graph decomposition always
needed?

SR 1 ita
geom universitat
N e wien

Dynamic (A + 1)- vertex
coloring

* A k-vertex coloring is an assignment of a number c(u)
from {1, ..., k} to every vertex u such that c(u) # c(v) if
(u,v) € E

 Fact: Every graph with maximum degree A hasa (A + 1)-
vertex coloring

« Dynamic version: Given graph G with maximum degree
< A and a sequence of edge insertions and deletions

« Goal: Maintain (A + 1)-vertex coloring

g niversitat
51 . wien

&z

Dynamic (A + 1)- vertex
coloring

 Random ranks [H - Pan Peng "19]:

Initial graph is empty

Each vertex v samples a random rank r(v) € [0,1] and
a random color c(v)

Maintain

- L, = all neighbors of v with ranks < r(v)
« H, = all neighbors of v with ranks > r(v)
* B, = colors used by no neighbor of v

* U, = colors used by exactly one neighbor of L,, and no
neighbor in H,

g wniversitat
el wien

52

Dyn. (A + 1)- vertex coloring

* Maintain
« L, = all neighbors of v with ranks < r(v)
- H, = all neighbors of v with ranks = r(v)
* B, = colors used by no neighbor of v

« U, = colors used by exactly one neighbor of L,, and no
neighbor in H,,

e Insert(u,v):
* if no conflict: c unchanged, update L,,, H,,, B, U,
« else: suppose v was colored last, call Recolor(v)

475 niversitat
A wien

53

Dyn. (A + 1)- vertex coloring

* Maintain
« L, = all neighbors of v with ranks < r(v)
- H, = all neighbors of v with ranks = r(v)
* B, = colors used by no neighbor of v

* U, = colors used by exactly one neighbor of L, and no
neighbor in H,,

« Recolor(v):
- if |B,| large: sample color from B, done

« else:
sample color ¢* from B, U U, and set c(v) = c¢*
if c* € B,, done
else:
find unique conflicting neighbor w and call Recolor(w)

w

g wniversitat
ey wien

5%

Dyn. (A + 1)- vertex coloring

* Maintain
« L, = all neighbors of v with ranks < r(v)
- H, = all neighbors of v with ranks = r(v)
* B, = colors used by no neighbor of v

* U, = colors used by exactly one neighbor of L, and no
neighbor in H,,
« Recolor(v):
- if |B,| large: sample color from B, done
* else: (*) sampling has
sample color ¢* from B, U U,, (*) and set c(v) = c¢* varigus subcases

if c*€ B,, done

else: %
find unique conflicting neighbor w and call Recolor(w)
— Leads to recoloring path w

475 niversitat
A wien

55

56

Constant time analysis

Theorem: A (A + 1)-vertex coloring can be maintained
dynamically in amortized expected O(1) time.

Proof idea: Expensive case if recoloring path is long.
 Partition vertices on path in 2 groups, A and B.
* Potential function ®
* @ = 0 initially, ® = 0 always
= sum of increases = sum of decreases
* (Case Aincreases or decreases @, Case B only decreases @
* |A®| proportional to running time of Case A and Case B

* Total running time in case A = sum of increases = sum of

decreases = total running time in case B

« Total running time in case A can be analyzed by
probabilistic argument

g niversitat
ey wien

&=

Constant time analysis

Theorem: A (A + 1)-vertex coloring can be maintained
dynamically in amortized expected O (1) time.

Note:

« Implies O(1) amortized expected bound on number
of color changes

- Independent, different approach: Bhattacharya et
al.'19

g wniversitat
el wien

Random Rank

Random Rank [Behnezhad et al, Chechik-Zhang, H-
Peng '19]:

« No movements of vertices

* Oblivious adversary: does not learn the ranks

* Might use additional randomness

Usage:
* (A + 1)-vertex coloring in O(1) time [H-Peng “19]

« Maximal independent set and maximal matching in
0(log*n) time [Behnezhad et al, Chechik-Zhang ‘19]

g7 universitat
"L wien

hoN /s
&=

57

Comparison

Hierarchy Random ranks

0 Partial ordering ¢ Full ordering

0 Ordering of vertices is ¢ Ordering of vertices is
dynamic fixed

¢ No maintenance overhead

0 Randomized against

© Maintenance overhead 1
oblivious adversary

p NN —— _
Deterministic 0 Sophisticated analysis:

0 Potential function potential function and
argument probabilistic analysis

No other techniques achieve polylog n update and query times

- g% wniversitat
. wien

60

Summary

* Dynamic graph algorithms are well-studied

Strong conditional lower bounds, but still some
interesting gaps (fully dynamic APSP)

* Many interesting techniques

Classic: Hierarchical decompositions in dynamic
graph algorithms

New: Vertices ordered by random ranking

Sparsification

g niversitat
ey wien

&=

Open questions

 [s picking a random permutation of the vertices also
useful for other dynamic problems?

- Experimental evaluation
See upcoming survey

* Close gaps:
* between upper and lower bounds
« adaptive vs oblivious adversary

g wniversitat
el wien

el

