
A survey of dynamic graph
algorithms

Monika Henzinger
University of Vienna

Static Algorithm

2

Performance measures:
1. Running Time
2. Space
3. Approximation ratio

Computational Problem

What is a Dynamic Algorithm?

3

Input
sequence

Output
sequence

.

Computational Problem

𝐼0 𝑂0

𝐼1 = 𝐼0 + ∆𝐼0 𝑂1

𝐼2 = 𝐼1 + ∆𝐼1 𝑂2

What is a (Fully) Dynamic Graph
Algorithm?

Computational graph problem

Operations:

• Initialize(G)

• InsertEdge(u, v, 𝑤𝑒𝑖𝑔ℎ𝑡)

• DeleteEdge(u,v)

• InsertNode(u)

• DeleteNode(u)

• Query(G) or Query(u) or Query(u, v)
4

Output
sequence

Dynamic algorithm
Sequence of
operations

What is a (Fully) Dynamic Graph
Algorithm?

Operations:

• Initialize(G) Preprocessing time

• InsertEdge(u, v, 𝑤𝑒𝑖𝑔ℎ𝑡)

• DeleteEdge(u,v)

• (InsertNode(u)) Update time

• (DeleteNode(u))

• Query(G) or Query(u) or Query(u, v) Query time
5

Output
sequence

Dynamic algorithm

Computational graph problem

Sequence of
operations

Input generation: Adversary Models

How is the input, i.e. the sequence of operations,
generated?

6

Output
sequence

Sequence of
operations

Adversary Models

Adaptive adversary:

• knows the algorithm (but not its random choices)

• sees all the answers to the previous queries

• based on this information and unlimited computational
power creates the next operation with the goal of maximizing
the total running time

7

Output
sequence

Sequence of
operations

Adversary Models

Oblivious adversary:

• knows the algorithm (but not its random choices)

• has to fix the sequence of operations before it receives any
output from the algorithm

• creates the sequence of operations with unlimited
computational power and with the goal of maximizing the
total running time

8

Output
sequence

Sequence of
operations

Adversary Models

Total running time for any sequence of operations 𝑠:
𝑇𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 ≥ 𝑇𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠

𝑇𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 𝑇𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠 if

• algorithm is deterministic

• output is unique

9

Output
sequence

Sequence of
operations

Performance Measures

Space: Usually linear or small polynomial

Preprocessing time: Usually linear or small polynomial

Time per operation:

• Trade-off: query vs update time

• Amortized vs worst-case

• Oblivious vs adaptive adversary

10

Outline

1. Motivation

2. State of the art

3. Conditional lower bounds

4. Hierarchical graph decompositions with
polylogarithmic time per operation

5. Hierarchical graph decompositions?

Notation:
• 𝑛 = number of nodes, usually unchanged

• 𝑚 = number of edges in current graph

11

Motivation

1. Real-world applications: huge dynamically
changing graphs: 55 out of 89 in survey

12

Graph Number of nodes Old number of
nodes

WWW host names 1.3 billion (June
2019)

1.0 billion (May
2016)

WWW (indexed) web
pages

5.7 billion (Sept
2019)

4.75 billion (July
2016)

Facebook 2.4 billion (July 2019) 2.1 billion (October
2016)

Motivation

1. Real-world applications

2. Fundamental computational question: How hard
is it to find the answer after a small change in the
input instance

13

This Photo by Unknown Author is licensed under CC BY

https://rinabrundu.com/category/sondaggi-2/
https://creativecommons.org/licenses/by/3.0/

Motivation

1. Real-world applications

2. Fundamental computational question

3. Subroutines in static graph algorithms:

• Example: Max-flow and multi-commodity flow [Garg-
Koenemann’98, Madry’10] algorithms with shortest
augmenting paths need dynamic shortest-path
algorithm

• Many algorithms use dynamic tree data structure

14

Motivation

1. Real-world applications

2. Fundamental computational question

3. Subroutine in static graph algorithms

4. Techniques are often reused in other areas of
algorithms such as data stream algorithms,
distributed algorithms, and parallel algorithms

15

Update time for “classic’’ problems
with polylog query time

• Undirected: For any small constant 𝜖 > 0
• Connectivity: Ω(log 𝑛) [Patrascu-Demaine ‘04], ෨𝑂(1) [H-King ’95,

Holm-deLichtenberg-Thorup ’98]
• MST: Ω(log 𝑛) [Patrascu-Demaine ‘04], ෨𝑂(1) [Holm-deLichtenberg-

Thorup ’98]

• SSSP: Exact: Ω 𝑚1−𝜖 , ෨𝑂(𝑚)

• APSP: Exact: Ω 𝑚1−𝜖 , ෨𝑂(𝑛2) update, ෨𝑂(𝑛) path reporting query
[Demetrescu-Italiano ‘03]

• 𝑂(𝑛1.9) update, 𝑂(𝑛1.529) distance query, 𝑂 𝑛1.9 path reporting
query [Bergamaschi, H, Gutenberg, Vassilevska Williams, Wein ’ 20]

• Minimum Cut:

• Ω 𝑛1−𝜖 weighted exact, ෨𝑂(𝑚)

• 1 + 𝜖 -approx: ෨𝑂(𝑛) [Thorup’01]

• Maximum cardinality matching:

• Ω 𝑚1/2−𝜖 exact, 𝑂 𝑚

• 𝑂(𝑚) for (1+)-approx. [Gupta-Peng’13]
16

Update time for ``classic’’ problems
with polylog query time

• Directed: For any small constant 𝜖 > 0
• Reachability/SSSP:

• Ω 𝑚1−𝜖 , 𝑂(𝑚)

• SCC: Is the graph strongly connected?

• Ω 𝑚1/2−𝜖 , 𝑂 min 𝑚, 𝑛1.406 [van den Brand, Nanongkai,
Saranurak ‘19]

• Transitive closure:

• Ω 𝑚1−𝜖 , ෨𝑂(𝑛2)

• update time: 𝑂 𝑛1.406 , query time 𝑂 𝑛1.406 [van den
Brand, Nanongkai, Saranurak ‘19]

• APSP:

• Ω 𝑚1−𝜖 , ෨𝑂(𝑛2) update, ෨𝑂(𝑛) path reporting query
Demetrescu-Italiano ‘03]

17

Update time for approximation algorithms
with polylog query time

• (∆ + 𝟏) − vertex coloring:

• 𝑂(1) [H-Peng ‘19, Bhattacharya-Grandoni-Kulkarni-Liu ‘19]

• 𝟏 + 𝜺 - approx min spanning forest value:

• 𝑂(1) if max weight is 𝑂(𝑚1/3) [H-Peng’19]

• Edge orientation with low outdegree:

• 𝑂 1 for 𝑂 (log 𝑛)2 −approximation [Berglin-Brodal ‘17]

• 𝟏 + 𝜺 - approx densest subgraph and 𝟐 + 𝜺 - approx
degeneracy :

• ෨𝑂 1 [Sawlani-Wang ’19]

• 𝟒 + 𝜺 - approx k-core decomposition:

• ෨𝑂 1 [Sun-Chan-Sozio ’20]

• 𝟏 + 𝜺 - electrical flow:

• 𝑂(min(𝑚3/4, 𝑛5/6)) [Durfee-Gao-Goranci-Peng ’19]
18

Update time for approximation algorithms
with polylog query time

• Low-stretch probabilistic tree embedding:

• 𝑛𝑜(1) for 𝑛𝑜(1) stretch [Forster-H-Goranci ‘20]

• Low-stretch spanner:

• 2𝑘 − 1 stretch with size 𝑂(𝑛1+1/𝑘 log 𝑛) : 𝑂(1)𝑘 or
𝑂(𝑘(log 𝑛)2) [Baswana,-Khurana,-Sarkar ’12, Forster-Goranci
‘19]

• (1 + 𝜀, 𝑛𝑜(1))-spanner with size 𝑂(𝑛1+𝑜 1):
Ω 𝑚1−𝜖 for combinatorial algorithms, 𝑂(𝑛1.529)
[Bergamaschi, H, Gutenberg, Vassilevska Williams,Wein ’ 20]

• Diameter:

• Ω(𝑛2−𝜖) for (
3

2
− 𝜀)-approx [Ancona, H, Roditty, Vassilevska

Williams, Wein ‘19]

19

Outline

1. Motivation

2. State of the art

3. Conditional lower bounds

4. Hierarchical graph decompositions with
polylogarithmic time per operation

5. Hierarchical graph decompositions?

Notation:
• 𝑛 = number of nodes, usually unchanged

• 𝑚 = number of edges in current graph

20

Conditional lower bounds
[Patrascu’10, Abboud, Vassilevska Williams’14, H-Krinninger-

Nanongkai-Saranurak’15]

Lower bound Ω 𝑚
1

2
−𝜀 , Ω(𝑛1−𝜀)or Ω(𝑚1−𝜀) on time per

update/query for fully dynamic based on common
complexity assumptions

• Many apply to oblivious adversary

• Apply to amortized time

21

Conditional lower bounds
Conditional lower bounds [Patrascu ‘10, Abboud-

VassilevskaWilliams’14,H-Krinninger-Nanongkai-Saranurak’15,] using
these conjectures

• Assuming SETH (Strong Exponential Time Hypothesis):
Satisfiability of a CNF formula with 𝑛 variables takes time

Ω 2(1−ε)𝑛 𝑝𝑜𝑙𝑦(𝑛) or

• 3SUM takes time Ω 𝑛2−𝜀 or

• Triangle detection takes time Ω 𝑛3−𝜀 or

• AllPairsShortestPath or combinatorial Boolean matrix
multiplication or online matrix-vector multiplications (OMv)
takes time Ω 𝑛3−𝜀

22

Input: Boolean 𝑀

Output:

Conjecture: No algorithm with total time 𝑂(𝑛3−𝜖)

…

𝒗𝟏 𝒗𝟐 𝒗𝒏

𝑴𝒗𝟏 𝑴𝒗𝟐

…

𝑴𝒗𝒏

OMv Conjecture
[H-Krinninger-Nanonkai-Saranurak’15]

Not only
“combinatorial”

arrive
online

Dynamic ss-reachability takes
Ω 𝑛1−𝜖 under OMv

• Given M construct bipartite graph (𝑋 ∪ 𝑌, 𝐸) with 𝑛
nodes in each column plus an isolated node s

edge (𝑦𝑗 , 𝑥𝑖)

iff Mi,j = 1

24

𝒙𝒊

s

𝑖
⋯

⋮ 1 ⋱ ⋮
⋯

𝑗

𝒚𝒋

Dynamic ss-reachability takes
Ω 𝑛1−𝜖 under OMv

• Given M construct bipartite graph (𝑋 ∪ 𝑌, 𝐸)with n
nodes in each column plus an isolated node s

• Given vector 𝑣 add edge (𝑠, 𝑦𝑗) iff 𝑣𝑗 = 1 edge (𝑦𝑗 , 𝑥𝑖)

iff Mi,j = 1

Note: (Mv)i = 1 iff s can reach 𝒙𝒊

• 𝑖
⋯

⋮ 1 ⋱ ⋮
⋯

...
1..

25

s

𝒙𝒊

𝒚𝒋

𝑗

𝑗

Dynamic ss-reachability takes
Ω 𝑛1−𝜖 under OMv

• Given M construct bipartite graph with n nodes in each column plus
an isolated node s

• Given vector v add edge (𝑠, 𝑦𝑗) iff vi = 1 edge (𝑦𝑗 , 𝑥𝑖)
iff Mi,j = 1

Note: (Mv)i = 1 iff s can reach 𝒙𝒊

• Algorithm for computing Mv:
• For 𝑗 from 1 to 𝑛:

• if 𝑣𝑗 = 1 then insert(𝑠, 𝑦𝑗)
• For 𝑖 from 1 to 𝑛:

• if s can reach 𝑥𝑖 return 1, else 0
• For 𝑗 from 1 to 𝑛:

• if 𝑣𝑗 = 1 then delete(𝑠, 𝑦𝑗)

26

s

𝒙𝒊

𝒚𝒋

Dynamic ss-reachability takes
Ω 𝑛1−𝜖 under OMv

• Algorithm for computing Mv:

• For 𝑗 from 1 to n:

• if 𝑣𝑗= 1 then insert(𝑠, 𝑦𝑗)

• For 𝑖 from 1 to n:

• if s can reach 𝑥𝑖 return 1 else 0

• For 𝑗 from 1 to n:

• if 𝑣𝑗= 1 then delete(𝑠, 𝑦𝑗)

 𝑛 insertions, deletions and queries per vector 𝑣 on a graph
with 2𝑛 + 1 nodes and O(𝑛2) edges

 𝑛2 insertions, deletions and queries for all vectors 𝑣 on a
graph with 2𝑛 + 1 nodes and O(𝑛2) edges take time Ω 𝑛3−𝜀

27

s

𝒙𝒊

𝒚𝒋

Dynamic ss-reachability takes
Ω 𝑛1−𝜖 under OMv

 𝑛2 insertions, deletions and queries for all vectors 𝑣 on a graph
with 2𝑛 + 1 nodes and O(𝑛2) edges take time Ω 𝑛3−𝜀

• No dynamic single source reachability algorithm can take time

• Ω 𝑛1−𝜀 per update and

• Ω 𝑛1−𝜀 per query

28

Lower bounds based on OMv

Lower bound of 𝜴(𝒎𝟏/𝟐−𝜺) on time per update or query
(sometimes even 𝜴(𝒎𝟏−𝜺)) for fully dynamic

• <5/3-approximate SSP

• Densest subgraph

• (2 − 𝜀)-approximate weighted diameter

• Strong connectivity

• Bipartite perfect matching

• Size of bipartite maximum cardinality matching

• Electrical flow [Goranci-H-Peng’18]

• …

29

Outline

• Motivation

• State of the art

• Conditional lower bounds

• Hierarchical graph decompositions with
polylogarithmic time per operation

• Type 1: Monotone, global invariants

• Type 2: Non-monotone, local invariants

• Are hierarchies necessary?

30

Hierarchical graph decompositions
with polylog time per operation

• Nodes and/or edges are partitioned into 𝑂(log 𝑛) levels
dependent on

• sequence of updates and

• invariants

• Goal: Polylogarithmic time per update

31

Hierarchical graph decomposition 1

• Monotone hierarchy with global invariants
[H-King’95, Holm-de Lichtenberg-Thorup’98]:

• Monotone: All nodes/edges initially and all newly
inserted edges are on level 0 and only move up in the
hierarchy.

• Global invariants

32

Hierarchical graph decomposition 1
Spanning tree [Holm et al ’98]

• Nodes on all levels, each edge 𝑒 has a level
𝑙(𝑒), initially 0

• Maintains spanning forest 𝑇
• 𝑇𝑖 subforest of 𝑇 of edges of level ≥ 𝑖, spans

graph induced by all edges on level ≥ 𝑖

• Global invariants:
• Level invariant: Let 𝑒 be a tree edge. All non-

tree edges crossing the tree cut 𝑇 – { 𝑒 } must
have level ≤ 𝑙(𝑒)

• Size invariant: Number of nodes in a cc on level
𝑖 is 𝑂(

𝑛

2𝑖)

33

𝑒

𝑒‘

Hierarchical graph decomposition 1

34

≤
𝑛

2
≤

𝑛

2

≤
𝑛

4
≤

𝑛

4
≤

𝑛

4

⋯
⋯

𝑂(log 𝑛) levels

Hierarchical graph decomposition 1

35

≤
𝑛

2
𝑢 𝑣

≤
𝑛

4
≤

𝑛

4
≤

𝑛

4

⋯
⋯

Delete(𝒖, 𝒗)

𝑂(log 𝑛) levels

Hierarchical graph decomposition 1

36

Delete(𝒖, 𝒗):

If (𝑢, 𝑣) is a tree edge on level 𝑖 then
1. Let 𝑇′ := smaller of 𝑇𝑢 and 𝑇𝑣

2. …

≤
𝑛

4
≤

𝑛

4

⋯
⋯

≤
𝑛

2
𝑢

𝑇𝑢 𝑇𝑣

𝑣

Hierarchical graph decomposition 1

37

2. Move all tree edges of 𝑇′ that are on level 𝑖 to level 𝑖 +1
3. Test all non-tree edges incident to 𝑇′ until one is found that reconnects 𝑇𝑢

and 𝑇𝑣 (=replacement edge) or all have been tested.
4. Move all the tested non-tree edges to level 𝑖 +1
5. If no replacement edge found on level i, repeat on level 𝑖 − 1 else

replacement edge becomes a level-𝑖 tree edge

𝑂(log 𝑛) levels

≤
𝑛

4
≤

𝑛

4
≤

𝑛

4

𝑣≤
𝑛

2
𝑢 𝑣

Running time analysis

• Level invariant implies: # of levels ≤ log 𝑛

• With suitable data structures: work of delete is O(# of
edges whose level has increased * polylog 𝑛)

• Charge O(polylog 𝑛) to each edge that has its level
increased to account for the work

• Each edge can be charged only log 𝑛 times

• Total charge per edge O(polylog 𝑛)

• Total work O(𝑚 polylog 𝑛)

• Amortized time O(polylog 𝑛) per deletion

38

Hierarchical graph decomposition 1

• Monotone hierarchy with global invariants:
• Monotone edge movements

• Global invariants

• Simple running time analysis, longer proof of global invariants

Usage: Connectivity, MST, 2-edge connectivity, 2-vertex
connectivity

Almost tight: Ω(log 𝑛) cell probe lower bound [Patrascu-Demaine
04]

No other approaches achieve same performance for these problems

39

Hierarchical graph decomposition 2

• Hierarchies with local invariants
[Bhattacharya-H-Italiano‘15]:

• Bi-directional movements: Edges and nodes move up
and down deterministically

• Local invariants: Condition on neighborhood of each
node, directly enforced by algorithm

• Combination with a second algorithm, e.g., primal-dual
method

40

Hierarchical graph decomposition 2
for matching and vertex cover

• Each node 𝑣 has a level 𝑙 𝑣 ∈ [−1, log 𝑛]

• Each edge e has a weight 𝑤 𝑒 = ൗ1
(1+𝜀)𝑖 ,

where 𝑖 is the level of the higher end point
• Each node 𝑣 has a weight 𝑊 𝑣 =

σ(𝑢,𝑣)∈𝐸 𝑤(𝑢, 𝑣)

• Local invariants:

• ∀𝑣 𝜖 𝑉 − 𝑆−1: 𝑊 𝑣 ∈
1

1+𝜀
, 1

• ∀𝑣 𝜖 𝑆−1: 𝑊 𝑣 ∈ [0,1]

 No edge between 2 vertices of 𝑆−1

 𝑉 − 𝑆−1 is vertex cover, 𝑆−1 is not in vertex
cover

 Local invariants = relaxed complementary
slackness conditions for matching LP

41

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯
⋯

⋯
⋯

⋯
⋯

⋯ ⋯
𝑊 𝑣 ∈ [0,1]

𝑊 𝑣 ∈ [
1

1 + 𝜀
, 1]

Making it dynamic

• Edge update might violate local invariants

• Idea: If 𝑊(𝑥) is too large, move node up

𝑥⋯

𝑥⋯

𝑤 𝑒

= 1/(1 + 𝜀)𝑙 𝑥 +1
𝑤 𝑒

= 1/(1 + 𝜀)𝑙 𝑥

𝑊(𝑥) might drop, at most by multiplicative
factor 1/(1 + 𝜀)

Making it dynamic

• Edge update might violate local invariants

• Idea: If 𝑊(𝑥) is too small, move node down

𝑥⋯

𝑥⋯

𝑤 𝑒

= 1/(1 + 𝜀)𝑙 𝑥 −1

𝑤 𝑒

= 1/(1 + 𝜀)𝑙 𝑥

𝑊(𝑥) might increase, at most by
multiplicative factor (1 + 𝜀)

Making it dynamic

• Idea: If 𝑊(𝑥) is too large/small, move node

FIX-NODE-WEIGHTS

WHILE there is a node 𝑥 with 𝑊(𝑥) too large or too small
If 𝑊(𝑥) is too large then

move 𝑥 up to the lowest level such that 𝑊(𝑥) ≤ 1
If 𝑊(𝑥) is too small then

move 𝑥 down ...

𝑥⋯

𝑥⋯

𝑤 𝑒 = 1/2𝑙 𝑥 +1
𝑤 𝑒 = 1/2𝑙 𝑥

Maintains relaxed
complementary
slackness
conditions

Making it dynamic

• If 𝑊(𝑥) is too large, move node up:

FIX-NODE-WEIGHTS

WHILE there is a node 𝑥 with 𝑊(𝑥) too large or too small
If 𝑊(𝑥) is too large then

move 𝑥 up to the lowest level such that 𝑊(𝑥) ≤ 1
If 𝑊(𝑥) is too small then

move 𝑥 down ...

𝑥⋯

𝑥⋯

𝑤 𝑒 = 1/2𝑙 𝑥 +1

𝑤 𝑒 = 1/2𝑙 𝑥

might decrease weight
of neighbors
 neighbors might drop
 their neighbors might

rise
 AVALANCHE !

Hierarchical graph decomposition 2

• Hierarchies with local invariants:

• Simple correctness proof

• Running time analysis:

• With carefully chosen potential function:

• 𝑂 log 𝑛 [Bhattacharya-H-Italiano ‘15]

• 𝑂(1) [Bhattacharya-Chakrabarty-H’17, Bhattacharya-
Kulkarni’18]

• Combination with second alg, e.g. primal-dual method

46

Hierarchical graph decomposition 2
• Hierarchies with local invariants [Bhattacharya-H-

Italiano‘15]
• Bi-directional movements
• Local invariants
• Combination with second algorithm
• Correctness proof follows directly, running time analysis is

sophisticated

Usage:
• (2 + 𝜀)-approximate vertex cover & fractional matching
• 𝑂 𝑓2 -approximate set cover, 𝑓 = number of sets one element

can belong to
• (2 + 𝜀)-approximate densest subgraph
• (∆ + 1)-vertex coloring
• 4 + 𝜀 - approx k-core decomposition

47

Outline

• Motivation

• State of the art

• Hierarchical graph decompositions with
polylogarithmic time per operation

• Type 1: Monotone, global invariants

• Type 2: Non-monotone, local invariants

• Are hierarchies necessary?

48

Outline
• Motivation

• State of the art

• Hierarchical graph decompositions with
polylogarithmic time per operation

• Type 1: Monotone, global invariants

• Type 2: Non-monotone, local invariants

• Are dynamic hierarchies necessary?

49

Dynamic hierarchical graph
decompositions?

Disadvantages:
• Hard to implement

• Large constants, slow in practice

• Sometimes bottleneck in theory:
• Example: ∆ + 1 -vertex coloring

• worst-case 𝑂(log 𝑛) time to maintain hierarchy

• 𝑂(1) expected time to maintain coloring with hierarchy

Is dynamic hierarchical graph decomposition always
needed?

50

Dynamic (∆ + 1)- vertex
coloring

• A 𝑘-vertex coloring is an assignment of a number c(𝑢)
from {1, … , 𝑘} to every vertex 𝑢 such that c(𝑢) ≠ c 𝑣 if
(𝑢, 𝑣) ∈ 𝐸

• Fact: Every graph with maximum degree ∆ has a ∆ + 1 -
vertex coloring

• Dynamic version: Given graph G with maximum degree
≤ ∆ and a sequence of edge insertions and deletions

• Goal: Maintain ∆ + 1 -vertex coloring

51

Dynamic (∆ + 1)- vertex
coloring

• Random ranks [H – Pan Peng ’19]:

• Initial graph is empty

• Each vertex 𝑣 samples a random rank 𝑟 𝑣 ∈ [0,1] and
a random color c 𝑣

• Maintain

• 𝐿𝑣 = all neighbors of 𝑣 with ranks < 𝑟(𝑣)

• 𝐻𝑣 = all neighbors of 𝑣 with ranks ≥ 𝑟(𝑣)

• 𝐵𝑣 = colors used by no neighbor of 𝑣

• 𝑈𝑣 = colors used by exactly one neighbor of 𝐿𝑣 and no
neighbor in 𝐻𝑣

52

Dyn. (∆ + 1)- vertex coloring

• Maintain

• 𝐿𝑣 = all neighbors of 𝑣 with ranks < 𝑟(𝑣)

• 𝐻𝑣 = all neighbors of 𝑣 with ranks ≥ 𝑟(𝑣)

• 𝐵𝑣 = colors used by no neighbor of 𝑣

• 𝑈𝑣 = colors used by exactly one neighbor of 𝐿𝑣 and no
neighbor in 𝐻𝑣

• Insert(𝑢, 𝑣):

• if no conflict: 𝑐 unchanged, update 𝐿𝑣, 𝐻𝑣, 𝐵𝑣, 𝑈𝑣

• else: suppose 𝑣 was colored last, call Recolor(𝑣)

53

Dyn. (∆ + 1)- vertex coloring
• Maintain

• 𝐿𝑣 = all neighbors of 𝑣 with ranks < 𝑟(𝑣)

• 𝐻𝑣 = all neighbors of 𝑣 with ranks ≥ 𝑟(𝑣)

• 𝐵𝑣 = colors used by no neighbor of 𝑣

• 𝑈𝑣 = colors used by exactly one neighbor of 𝐿𝑣 and no
neighbor in 𝐻𝑣

• Recolor(𝑣):
• if |𝐵𝑣| large: sample color from 𝐵𝑣, done

• else:
• sample color 𝑐∗ from 𝐵𝑣 ∪ 𝑈𝑣 and set 𝑐 𝑣 = 𝑐∗

• if 𝑐∗ ∈ 𝐵𝑣, done

• else:

• find unique conflicting neighbor 𝑤 and call Recolor(𝑤)

54

𝑣

𝑤

Dyn. (∆ + 1)- vertex coloring
• Maintain

• 𝐿𝑣 = all neighbors of 𝑣 with ranks < 𝑟(𝑣)

• 𝐻𝑣 = all neighbors of 𝑣 with ranks ≥ 𝑟(𝑣)

• 𝐵𝑣 = colors used by no neighbor of 𝑣

• 𝑈𝑣 = colors used by exactly one neighbor of 𝐿𝑣 and no
neighbor in 𝐻𝑣

• Recolor(𝑣):
• if |𝐵𝑣| large: sample color from 𝐵𝑣, done

• else:
• sample color 𝑐∗ from 𝐵𝑣 ∪ 𝑈𝑣 (*) and set 𝑐 𝑣 = 𝑐∗

• if 𝑐∗∈ 𝐵𝑣, done

• else:

• find unique conflicting neighbor 𝑤 and call Recolor(𝑤)

55

𝑣

𝑤⟹ Leads to recoloring path

(*) sampling has
various subcases

Theorem: A (∆ + 1)-vertex coloring can be maintained
dynamically in amortized expected 𝑂(1) time.

Proof idea: Expensive case if recoloring path is long.

• Partition vertices on path in 2 groups, A and B.

• Potential function Φ
• Φ = 0 initially, Φ ≥ 0 always

⟹ sum of increases ≥ sum of decreases

• Case A increases or decreases Φ, Case B only decreases Φ

• |∆Φ| proportional to running time of Case A and Case B

• Total running time in case A ≥ sum of increases ≥ sum of
decreases ≥ total running time in case B

• Total running time in case A can be analyzed by
probabilistic argument

56

Constant time analysis

Theorem: A (∆ + 1)-vertex coloring can be maintained
dynamically in amortized expected 𝑂(1) time.

Note:

• Implies O(1) amortized expected bound on number
of color changes

• Independent, different approach: Bhattacharya et
al.’19

57

Constant time analysis

Random Rank

Random Rank [Behnezhad et al, Chechik-Zhang, H-
Peng ’19]:

• No movements of vertices

• Oblivious adversary: does not learn the ranks

• Might use additional randomness

Usage:

• (∆ + 1)-vertex coloring in 𝑂(1) time [H-Peng ‘19]

• Maximal independent set and maximal matching in
𝑂 log4𝑛 time [Behnezhad et al, Chechik-Zhang ‘19]

58

Comparison

59

Hierarchy

0 Partial ordering

0 Ordering of vertices is
dynamic

0 Maintenance overhead

0 Deterministic

0 Potential function
argument

0 Full ordering

0 Ordering of vertices is
fixed

0 No maintenance overhead

0 Randomized against
oblivious adversary

0 Sophisticated analysis:
potential function and
probabilistic analysis

Random ranks

No other techniques achieve polylog n update and query times

Summary

• Dynamic graph algorithms are well-studied

• Strong conditional lower bounds, but still some
interesting gaps (fully dynamic APSP)

• Many interesting techniques

• Classic: Hierarchical decompositions in dynamic
graph algorithms

• New: Vertices ordered by random ranking

• Sparsification

60

Open questions

• Is picking a random permutation of the vertices also
useful for other dynamic problems?

• Experimental evaluation
• See upcoming survey

• Close gaps:
• between upper and lower bounds

• adaptive vs oblivious adversary

61

